Water pollution and environment

Water pollution is the contamination or pollution of water bodies e.g. lakes, rivers, oceans, aquifers and groundwater. Water pollution occurs when pollutants are directly or indirectly discharged into water bodies without adequate treatment to remove harmful compounds. Water pollution affects plants and organisms living in these bodies of water. In almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities.

It has been suggested that it is the leading worldwide cause of deaths and diseases, and that it accounts for the deaths of more than 14,000 people daily. An estimated of 580 people in India die of water pollution related illness every day. Around 90 percent the water in the cities of China is polluted, and as of 2007, half a billion Chinese had no access to safe drinking of water. In addition to the acute problems of water pollution in developing countries, developed countries continue to struggle with pollution problems as well. In the most recent national report on water quality in the United States, 45 percent of assessed stream miles, 47 percent of assessed lake acres, and 32 percent of assessed bays and estuarine square miles were classified as polluted. The head of Chinas national development agency in 2007 said 1/4th the length of Chinas seven main rivers were so poisoned the water harmed the skin.

Water is typically referred to as polluted when it is impaired by anthropogenic contaminants and either does not support a human use, such as drinking water, or undergoes a marked shift in its ability to support its constituent biotic communities, such as fish. Natural phenomena such as volcanoes, algae blooms, storms, and earthquakes also cause major changes in water quality and the ecological status of water. The specific contaminants leading to pollution in water include a wide spectrum of chemicals, pathogens, and physical or sensory changes such as elevated temperature and discoloration. While many of the chemicals and substances that are regulated may be naturally occurring (calcium, sodium, iron, manganese, etc.) the concentration is often the key in determining what is a natural component of water, and what is a contaminant.

High concentrations of naturally occurring substances can have negative impacts on aquatic flora and fauna. Oxygen-depleting substances may be natural materials, such as plant matter (e.g. leaves and grass) as well as man-made chemicals. Other natural and anthropogenic substances may cause turbidity (cloudiness) which blocks light and disrupts plant growth, and clogs the gills of some fish species. Many of the chemical substances are toxic. Pathogens can produce waterborne diseases in either human or animal hosts. Alteration of waters physical chemistry includes acidity (change in pH), electrical conductivity, temperature, and eutrophication. Eutrophication is an increase in the concentration of chemical nutrients in an ecosystem to an extent that increases in the primary productivity of the ecosystem. Depending on the degree of eutrophication, subsequent negative environmental effects such as anoxia (oxygen depletion) and severe reductions in water quality may occur, affecting fish and other animal populations.

Decisions on the type and degree of treatment and control of wastes, and the disposal and use of adequately treated wastewater, must be based considering all the technical factors of each drainage basin, in order to prevent any further contamination or harm to the environment. Domestic sewage is typically 99.9 percent water with 0.1 percent pollutants. Although found in low concentrations, these pollutants pose risk on a large scale. In urban areas, domestic sewage is typically treated by centralized sewage treatment plants. Well-designed and operated systems (i.e., secondary treatment or better) can remove 90 percent or more of these pollutants. Some plants have additional systems to remove nutrients and pathogens. Most municipal plants are not specifically designed to treat toxic pollutants found in industrial wastewater cities with sanitary sewer overflows or combined sewer overflows employ one or more engineering approaches to reduce discharges of untreated sewage, including, utilizing a green infrastructure approach to improve storm water management capacity throughout the system, and reduce the hydraulic overloading of the treatment plant repair and replacement of leaking and malfunctioning equipments increasing overall hydraulic capacity of the sewage collection system.

A household or business not served by a municipal treatment plant may have an individual septic tank, which treats the wastewater on site and discharges into the soil. Alternatively, domestic wastewater may be sent to a nearby privately owned treatment system (e.g. in a rural community). Some industrial facilities generate ordinary domestic sewage that can be treated by municipal facilities. Industries that generate wastewater with high concentrations of conventional pollutants toxic pollutants or other nonconventional pollutants such as ammonia need specialized treatment systems. Some of these facilities can install a pre-treatment system to remove the toxic components, and then send the partially treated wastewater to the municipal system. Industries generating large volumes of wastewater typically operate their own complete on-site treatment systems. Some industries have been successful at redesigning their manufacturing processes to reduce or eliminate pollutants, through a process called pollution prevention. Heated water generated by power plants or manufacturing plants may be controlled with, cooling ponds, man-made bodies of water designed for cooling by evaporation, convection, and radiation. Cooling towers transfer waste heat to the atmosphere through evaporation and heat transfer. Co-generation is a process where waste heat is recycled for domestic and/or industrial heating purposes.

The writers are associated with the University of Agriculture Faisalabad, Pakistan.

Leave a Reply