(function(i,s,o,g,r,a,m){i['GogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-42942459-1', 'auto'); ga('send', 'pageview'); Super Nova Explosion may Reappear by 2037 - Technology Times

Super Nova Explosion may Reappear by 2037

It’s challenging to make predictions, especially in astronomy. There are however, a few forecasts astronomers can depend on, such as the timing of upcoming lunar and solar eclipses, the clockwork return of some comets and supernova.

Super Nova Explosion may Reappear by 2037

Now, looking far beyond the solar system, astronomers have added a solid prediction of an event happening deep in intergalactic space: an image of an exploding star, dubbed Super nova Requiem, which will appear around the year 2037. Although this rebroadcast will not be visible to the naked eye, some future telescopes should be able to spot it.

It turns out that this future appearance will be the fourth-known view of the same supernova, magnified, brightened, and split into separate images by a massive foreground cluster of galaxies acting like a cosmic zoom lens. Three images of the supernova were first found from archival data taken in 2016 by NASA’s Hubble Space Telescope.

The multiple images are produced by the monster galaxy cluster’s powerful gravity, which distorts and magnifies the light from the supernova far behind it, an effect called gravitational lensing. First predicted by Albert Einstein, this effect is similar to a glass lens bending light to magnify the image of a distant object.

The three lensed super nova images, seen as tiny dots captured in a single Hubble snapshot, represent light from the explosive aftermath. The dots vary in brightness and color, which signify three different phases of the fading blast as it cooled over time.

“This new discovery is the third example of a multiply imaged supernova for which we can actually measure the delay in arrival times,” explained lead researcher Steve Rodney of the University of South Carolina in Columbia. “It is the most distant of the three, and the predicted delay is extraordinarily long. We will be able to come back and see the final arrival, which we predict will be in 2037, plus or minus a couple of years.”

The light that Hubble captured from the cluster, MACS J0138.0-2155, took about four billion years to reach Earth. The light from Supernova Requiem needed an estimated 10 billion years for its journey, based on the distance of its host galaxy.

The team’s prediction of the supernova’s return appearance is based on computer models of the cluster, which describe the various paths the supernova light is taking through the maze of clumpy dark matter in the galactic grouping. Dark matter is an invisible material that comprises the bulk of the universe’s matter and is the scaffolding upon which galaxies and galaxy clusters are built.

Originally Published By PhysOrg

Leave a Reply