New Photonic Materials Could Enable Ultra-Fast Light-Based Computing

Photonic materials are being developed by researchers to allow for powerful and efficient light-based computing

New Photonic Materials Could Enable Ultra-Fast Light-Based Computing

Researchers at the University of Central Florida are developing new photonic materials which may one day be used to enable ultra-fast, low-power light-based computing. The unique materials referred to as topological insulators, resemble wires that have been flipped inside out, with the insulation on the inside and the current flowing along the exterior. Researchers at the University of Central Florida are developing new photonic materials which may one day be used to enable ultra-fast, low-power light-based computing. The unique materials referred to as topological insulators, resemble wires that have been flipped inside out, with the insulation on the inside and the current flowing along the exterior.

In order to avoid the overheating issue that today’s ever-smaller circuits encounter, topological insulators could be incorporated into circuit designs to enable the packing of more processing power into a given area without generating heat. The researchers’ most recent study, which was published on April 28 in the journal Nature Materials, presented a brand-new process for creating the materials that make use of a unique, chained honeycomb lattice structure. The linked, honeycombed pattern was laser etched onto a piece of silica, a material often used to create photonic circuits, by the researchers.

The design’s nodes enable the researchers to regulate the current without bending or stretching the photonic wires, which is required for directing the flow of light and thus information in a circuit. The new photonic material overcomes the drawbacks of contemporary topological designs that offered fewer features and control while supporting much longer propagation lengths for information packets by minimizing power losses.The researchers envision that the new design approach introduced by the bimorphic topological insulators will lead to a departure from traditional modulation techniques, bringing the technology of light-based computing one step closer to reality.

Topological insulators could also one day lead to quantum computing as their features could be used to protect and harness fragile quantum information bits, thus allowing processing power hundreds of millions of times faster than today’s conventional computers. The researchers confirmed their findings using advanced imaging techniques and numerical simulations.

“Bimorphic topological insulators introduce a new paradigm shift in the design of photonic circuitry by enabling secure transport of light packets with minimal losses,” says Georgios Pyrialakos, a postdoctoral researcher with UCF’s College of Optics and Photonics and the study’s lead author. The next steps for the research include the incorporation of nonlinear materials into the lattice that could enable the active control of topological regions, thus creating custom pathways for light packets, says Demetrios Christodoulides, a professor in UCF’s College of Optics and Photonics and study co-author

Source: This news is originally published by scitechdaily